

xarray_mongodb

xarray_mongodb allows storing xarray [http://xarray.pydata.org]
objects on
MongoDB. Its design is heavily influenced by
GridFS [https://docs.mongodb.com/manual/core/gridfs/].

Current Features

	Synchronous operations with
PyMongo [https://api.mongodb.com/python/current/]

	asyncio support with Motor [https://motor.readthedocs.io/]

	Units annotations with Pint [https://pint.readthedocs.io/]

	Delayed put/get of xarray objects backed by dask [https://dask.org/].
Only metadata and numpy-backed variables (e.g. indices) are written and read
back at the time of graph definition.

	Support for dask distributed [https://distributed.dask.org/].
Note that the full init parameters of the MongoDB client are sent over the
network; this includes access credentials. One needs to make sure that
network communications between dask client and scheduler and between
scheduler and workers are secure.

	Data is stored on the database in a format that is agnostic to Python;
this allows writing clients in different languages.

Upcoming Features

	Sparse arrays with Sparse [https://sparse.pydata.org/]

Limitations

	The Motor Tornado driver is not supported due to lack of developer
interest - submissions are welcome.

	At the moment of writing, Dask and Pint are not supported at the same time due to
limitations in the Pint and xarray packages.

	attrs are limited to the data types natively accepted by PyMongo

	Non-string xarray dimensions and variable names are not supported

Quick start

>>> import pymongo
>>> import xarray
>>> import xarray_mongodb

>>> db = pymongo.MongoClient()['mydb']
>>> xdb = xarray_mongodb.XarrayMongoDB(db)
>>> a = xarray.DataArray([1, 2], dims=['x'], coords={'x': ['x1', 'x2']})
>>> _id, _ = xdb.put(a)
>>> xdb.get(_id)

<xarray.DataArray (x: 2)>
array([1, 2])
Coordinates:
 * x (x) <U2 'x1' 'x2'

Dask support:

>>> _id, future = xdb.put(a.chunk(1)) # store metadata and numpy variables
>>> future.compute() # store dask variables
>>> b = xdb.get(_id) # retrieve metadata and numpy variables
>>> b

<xarray.DataArray (x: 2)>
dask.array<shape=(2,), dtype=int64, chunksize=(1,)>
Coordinates:
 * x (x) <U2 'x1' 'x2'

>>> b.compute() # retrieve dask variables

<xarray.DataArray (x: 2)>
array([1, 2])
Coordinates:
 * x (x) <U2 'x1' 'x2'

Index

	Installation
	Required dependencies

	Optional dependencies

	Minimum dependency versions

	Sphinx documentation

	Testing

	What’s New
	v0.2.1 (2021-01-13)

	v0.2.0 (2020-07-03)
	Database structure changes

	Packaging changes

	Other changes

	v0.1.0 (2019-03-13)

	API Reference

	Database Reference
	xarray.meta

	xarray.chunks

	Sparse arrays

	Examples

	Indexing

	Missing data

	Developer notes: Pint and Sparse
	What is NEP18, and how it impacts xarray_mongodb

	Worst case

	Legacy support

License

[image: _images/amphora.png]
xarray_mongodb is developed by Amphora [http://www.amphora.net/] and is available
under the open source
Apache License [http://www.apache.org/licenses/LICENSE-2.0.html]

The database storage specifications are patent-free and in the public domain.
Anybody can write an alternative implementation; compatibility with the Python
module is not enforced by law, but strongly encouraged.

Installation

Required dependencies

	Python 3.6 or later

	MongoDB 3.6 or later

	xarray [http://xarray.pydata.org]

	dask [https://dask.org/]

	toolz [https://toolz.readthedocs.io/]

	PyMongo [https://api.mongodb.com/python/current/]

Optional dependencies

	Motor [https://motor.readthedocs.io//] for asyncio support

	Pint [https://pint.readthedocs.io/en/0.9/]

	Sparse [https://sparse.pydata.org/en/latest/] (support not yet implemented)

Minimum dependency versions

xarray_mongodb adopts a rolling policy regarding the minimum supported versions of its
dependencies:

	Python: 42 months
(NEP-29 [https://numpy.org/neps/nep-0029-deprecation_policy.html])

	numpy: 24 months
(NEP-29 [https://numpy.org/neps/nep-0029-deprecation_policy.html])

	pandas: 12 months

	pint and sparse: very latest available versions only, until the technology based
on NEP-18 [https://numpy.org/neps/nep-0018-array-function-protocol.html] will have
matured. This extends to all other libraries as well when one wants to use pint or
sparse.

	all other libraries: 6 months

You can see the actual minimum supported and tested versions:

	For using pint and/or sparse [https://github.com/AmphoraInc/xarray_mongodb/blob/master/ci/requirements-py36-min-nep18.yml]

	For everything else [https://github.com/AmphoraInc/xarray_mongodb/blob/master/ci/requirements-py36-min-all-deps.yml]

Sphinx documentation

To build the Sphinx documentation:

	Source conda environment

	Move to the root directory of this project

	Execute:

conda env create -n xarray_mongodb_docs --file ci/requirements-docs.yml
conda activate xarray_mongodb_docs
export PYTHONPATH=$PWD
sphinx-build -n -j auto -b html -d build/doctrees doc build/html

Testing

To run the test suite:

	Start MongoDB on localhost (no password)

	Source conda environment

	Move to the root directory of this project

	Execute:

conda env create -n xarray_mongodb_py37 --file ci/requirements-py37.yml
conda activate xarray_mongodb_py37
export PYTHONPATH=$PWD
py.test

Replace py37 with any of the environments available in the ci
directory.

What’s New

v0.2.1 (2021-01-13)

	Support for dask 2020.12

	CI tests for MongoDB 4.4 and Python 3.9

	Use Sphinx 3 for documentation

v0.2.0 (2020-07-03)

Database structure changes

	Removed units field from the xarray.chunks collection. Pint must always wrap
around dask, and not the other way around.

	DataArray.attrs was previously lost upon storage; it is now saved in the top-level
attrs dict. (#10 [https://github.com/AmphoraInc/xarray_mongodb/issues/10]).

	The attrs dict is now omitted if empty.

	Added attrs dict under every element of coords and data_vars (omitted if empty).

	Embed small variables into the metadata document. Added optional data key
to each variable on the database. Added new parameter embed_threshold_bytes to
control how aggressive embedding should be (see API Reference).

Packaging changes

	xarray_mongodb now adopts a rolling Minimum dependency versions policy based on
NEP-29 [https://numpy.org/neps/nep-0029-deprecation_policy.html].

Increased minimum dependency versions:

	Package

	old

	new

	xarray

	0.10.4

	0.13

	numpy

	1.13

	1.15

	dask

	1.1

	1.2

	pandas

	0.21

	0.24

	Added support for Python 3.8

	Added support for Motor on Windows (requires Motor >=2.1)

	toolz is now automatically installed by pip install xarray_mongodb

	Now using setuptools-scm for versioning

	Now using GitHub actions for CI

	Run all CI tests on MongoDB 3.6 and 4.2

Other changes

	Fixed error when a package importing xarray_mongodb runs mypy --strict

	Automatically cast scalar numpy objects (e.g. float64) wrapped by pint.Quantity to
scalar ndarrays upon insertion

v0.1.0 (2019-03-13)

Initial release.

API Reference

	
class xarray_mongodb.XarrayMongoDB(database, collection='xarray', *, chunk_size_bytes=261120, embed_threshold_bytes=261120, ureg=None)

	Synchronous driver for MongoDB to read/write
xarray objects

	Parameters

	
	database – pymongo.database.Database [https://api.mongodb.com/python/current/api/pymongo/database.html#pymongo.database.Database]

	collection (str [https://docs.python.org/3/library/stdtypes.html#str]) – prefix of the collections to store the xarray data. Two collections will
actually be created, <collection>.meta and <collection>.chunks.

	chunk_size_bytes (int [https://docs.python.org/3/library/functions.html#int]) – Size of the payload in a document in the chunks collection. Not to be confused
with dask chunks. dask chunks that are larger than chunk_size_bytes will be
transparently split across multiple MongoDB documents.

	embed_threshold_bytes (int [https://docs.python.org/3/library/functions.html#int]) – Cumulative size of variable buffers that will be embedded into the metadata
documents in <collection>.meta. Buffers that exceed the threshold (starting from
the largest) will be stored into the chunks documents in <collection>.chunks.

Note

	Embedded variables ignore the load parameter of get()

	dask variables are never embedded, regardless of size

	set embed_threshold_bytes=0 to force all buffers to be saved to
<collection>.chunks, witht he only exception of size zero non-dask
variables

	size zero non-dask variables are always embedded

	ureg (pint.registry.UnitRegistry [https://pint.readthedocs.io/en/latest/developers_reference.html#pint.registry.UnitRegistry]) – pint registry to allow putting and getting arrays with units.
If omitted, it defaults to the global registry defined with
pint.set_application_registry() [https://pint.readthedocs.io/en/latest/developers_reference.html#pint.set_application_registry]. If the global registry was never set, it
defaults to a standard registry built with defaults_en.txt.

	
get(_id, load=None)

	Read an xarray object back from MongoDB

	:param ObjectId [https://api.mongodb.com/python/current/api/bson/objectid.html#bson.objectid.ObjectId] _id:
	MongoDB object ID, as returned by put()

	Parameters

	load – Determines which variables to load immediately and which instead delay
loading with dask. Must be one of:

	None (default)
	Match whatever was stored with put(), including chunk sizes

	True
	Immediately load all variables into memory.
dask chunk information, if any, will be discarded.

	False
	Only load indices in memory; delay the loading of everything else with
dask.

	collection of str
	variable names that must be immediately loaded into memory. Regardless
of this, indices are always loaded. Non-existing variables are ignored.
When retrieving a DataArray, you can target the data with the special
hardcoded variable name __DataArray__.

Note

Embedded variables (see embed_threshold_bytes) are always loaded
regardless of this flag.

	Returns

	xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] or xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset], depending on what was
stored with put()

	Raises

	DocumentNotFoundError – _id not found in the MongoDB ‘meta’ collection, or one or more chunks are
missing in the ‘chunks’ collection.
This error typically happens when:

	documents were deleted from the database

	the Delayed returned by put() was never computed

	one or more chunks of the dask variables failed to compute at any point
during the graph resolution

If chunks loading is delayed with dask (see ‘load’ parameter), this
exception may be raised at compute() time.

It is possible to invoke get() before put() is computed, as long as:

	The pass parameter is valued None, False, or does not list any variables
that were backed by dask during put()

	the output of get() is computed after the output of put() is
computed

Warning

The dask graph (if any) underlying the returned xarray object contains full
access credentials to the MongoDB server. This commands caution if one
pickles it and stores it on disk, or if he sends it over the network e.g.
through dask distributed [https://distributed.dask.org/en/latest/].

	
put(x)

	Write an xarray object to MongoDB. Variables that are backed by dask are not
computed; instead their insertion in the database is delayed. All other
variables are immediately inserted.

This method automatically creates an index on the ‘chunks’ collection if there
isn’t one yet.

	Parameters

	x – xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] or xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset]

	Returns

	Tuple of:

	MongoDB _id of the inserted object

	dask delayed object, or None if there are no variables using dask. It must
be explicitly computed in order to fully store the Dataset/DataArray on
the database.

Warning

The dask future contains access full credentials to the MongoDB server. This
commands caution if one pickles it and stores it on disk, or if he sends it
over the network e.g. through dask distributed [https://distributed.dask.org/en/latest/].

	
class xarray_mongodb.XarrayMongoDBAsyncIO(database, collection='xarray', *, chunk_size_bytes=261120, embed_threshold_bytes=261120, ureg=None)

	asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] driver for MongoDB to read/write xarray objects

	Parameters

	
	database – motor.motor_asyncio.AsyncIOMotorDatabase [https://motor.readthedocs.io/en/stable/api-asyncio/asyncio_motor_database.html#motor.motor_asyncio.AsyncIOMotorDatabase]

	collection (str [https://docs.python.org/3/library/stdtypes.html#str]) – See XarrayMongoDB

	chunk_size_bytes (int [https://docs.python.org/3/library/functions.html#int]) – See XarrayMongoDB

	embed_threshold_bytes (int [https://docs.python.org/3/library/functions.html#int]) – See XarrayMongoDB

	ureg (pint.registry.UnitRegistry [https://pint.readthedocs.io/en/latest/developers_reference.html#pint.registry.UnitRegistry]) – See XarrayMongoDB

	
async get(_id, load=None)

	Asynchronous variant of xarray_mongodb.XarrayMongoDB.get()

	
async put(x)

	Asynchronous variant of xarray_mongodb.XarrayMongoDB.put()

	
exception xarray_mongodb.DocumentNotFoundError

	One or more documents not found in MongoDB

Database Reference

xarray_mongodb stores data on MongoDB in a format that is
agnostic to Python; this allows writing clients in different languages.

Like with GridFS [https://docs.mongodb.com/manual/core/gridfs/], data is
split across two collections, <prefix>.meta and <prefix>.chunks. By
default, these are xarray.meta and xarray.chunks.

Note

At the moment of writing, support for sparse arrays has not been implemented yet.

xarray.meta

The <prefix>.meta collection contains one document per
xarray.Dataset [https://xarray.pydata.org/en/stable/generated/xarray.Dataset.html#xarray.Dataset] or xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] object, formatted as
follows:

{
 '_id': bson.ObjectId(...),
 'attrs': bson.SON(...) (optional),
 'chunkSize': 261120,
 'coords': bson.SON(...),
 'data_vars': bson.SON(...),
 'name': '<str>' (optional),
}

Where:

	_id is the unique ID of the xarray object

	attrs, coords, and data_vars are bson.SON objects with
the same order as the dictionaries in the xarray object (note how dicts
preserve insertion order starting from Python 3.6).

	attrs are the Dataset.attrs or DataArray.attrs, in native MongoDB format.
Python object types that are not recognized by PyMongo are not supported. Omit when no
attrs are available.

	chunkSize is the number of bytes stored at most in each document in the
<prefix>.chunks collection. This is not to be confused with dask chunk
size; for each dask chunk there are one or more MongoDB documents in the
<prefix>.chunks collection (see later).

	name is the DataArray.name; omit for unnamed arrays and Datasets.

	coords and data_vars contain one key/value pair for every
xarray.Variable [https://xarray.pydata.org/en/stable/generated/xarray.Variable.html#xarray.Variable], where the key is the variable name and the value is a dict
defined as follows:

{
 'chunks': [[2, 2], [2, 2]],
 'dims': ['x'],
 'dtype': '<i8',
 'shape': [4, 4],
 'type': <'ndarray'|'COO'>,
 'attrs': bson.SON(...) (optional),
 'units': <str> (optional),

 # For ndarray only; omit in case of sparse.COO
 'data': <bytes> (optional),

 # For sparse.COO only; omit in case of ndarray
 'fill_value': <bytes> (optional),
 'sparse_data': <bytes> (optional),
 'sparse_coords': <bytes> (optional),
 'nnz': <int> (optional),
 }

	chunks are the dask chunk sizes at the moment of storing the array, or None if
the variable was not backed by dask at the moment of storing the object.

	dims are the names of the variable dimensions

	dtype is the dtype of the numpy/dask variable, always in string format

	shape is the overall shape of the numpy/dask array

	type is the backend array type; ndarray for dense objects and COO
for sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO] objects.

	attrs are the variable attributes, if any

	units is the string representation of pint.Unit [https://pint.readthedocs.io/en/latest/developers_reference.html#pint.Unit], e.g.
kg * m /s ** 2. The exact meaning of each symbol is deliberately omitted here
and remitted to pint (or whatever other engine is used to handle units of measures).
Omit for unit-less objects.

	data contains the raw numpy buffer of the variable in the metadata document. It
is meant to be used for small variables only. The buffer is in row-major (C) order
and little endian encoding. If data is defined, type must be set to
ndarray, chunks must always be None, and there must not be any documents for
the variable in the <prefix>.chunks collection.

	fill_value is the default value of a sparse array.
It is a bytes buffer in little endian encoding of as many bytes as implied by dtype.
This format allows encoding dtypes that are not native to MongoDB, e.g. complex
numbers. Never present when type=ndarray.

	sparse_data, sparse_coords and nnz store embedded sparse arrays.
See sparse_arrays.

xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html#xarray.DataArray] objects are identifiable by having exactly one variable in
data_vars, conventionally named __DataArray__. Note how DataArray.attrs are
the same as the attributes of its data variable; in xarray_mongodb they are only stored
in the top-level attrs key (there is never a data_vars.__DataArray__.attrs key).

Note

When dealing with dask variables, shape and/or chunks may contain NaN instead
of integer sizes when the variable size is unknown at the moment of graph definition.
Also, dtype, type, and fill_value may potentially be wrong in the
meta document and may be overridden by the chunks documents (see below).

xarray.chunks

The <prefix>.chunks collection contains the numpy data underlying the
array. There is a N:1 relationship between the chunks and the meta documents.

Each document is formatted as follows:

{
 '_id': bson.ObjectId(...),
 'meta_id': bson.ObjectId(...),
 'name': 'variable name',
 'chunk': [0, 0],
 'dtype': '<i8',
 'shape': [1, 2]},
 'n': 0,
 'type': <'ndarray'|'COO'>,

 # For ndarray only; omit in case of sparse.COO
 'data': <bytes>,

 # For sparse.COO only; omit in case of ndarray
 'sparse_data': <bytes>,
 'sparse_coords': <bytes>',
 'nnz': <int>,
 'fill_value': <bytes>,
}

Where:

	meta_id is the Object Id of the <prefix>.meta collection

	name is the variable name, matching one defined in <prefix>.meta

	chunk is the dask chunk ID, or None for variables that were not backed by dask at
the moment of storing the object

	dtype is the numpy dtype. It may be mismatched with, and overrides, the
one defined in the meta collection.

	shape is the size of the current chunk. Unlike the shape and
chunks variables defined in <prefix>.meta, it is never NaN.

	n is the sequential document counter for the current variable and
chunk (see below)

	type is the raw array type; ndarray for dense arrays; COO for sparse ones.
It may be mismatched with, and overrides, the one defined in the meta collection.

	data is the raw numpy buffer, in row-major (C) order and little endian encoding.

Since numpy arrays and dask chunks can be larger than the maximum size a MongoDB
document can hold (typically 16MB), each numpy array or dask chunk may be split across
multiple documents, much like it happens in GridFS.
If the number of bytes in data would be larger than chunkSize, then it is split
across multiple documents, with n=0, n=1, … etc. The split happens after converting
the numpy array into a raw bytes buffer, and may result in having numpy points split
across different documents if chunkSize is not an exact multiple of the
dtype size.

Note

It is possible for all variables to be embedded into the metadata. In such a case,
there won’t be any documents in the chunks collection.

Sparse arrays

Sparse arrays (constructed using the Python class sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO]) differ from
dense arrays as follows:

	In xarray.meta,

	The type field has value COO

	Extra field fill_value contains the value for all cells that are not explicitly
listed. It is a raw binary blob in little endian encoding containing exactly one
element of the indicated dtype.

	In xarray.chunks,

	The type field has value COO

	Extra field fill_value contains the value for all cells that are not
explicitly listed

	Extra field nnz is a non-negative integer (possibly zero) counting the number of
cells that differ from fill_value.

	There is no data field.

	The sparse_data field contains sparse values. It is a binary blob representing a
one-dimensional numpy array of the indicated dtype with as many elements as nnz.

	The field sparse_coords is a binary blob representing a two-dimensional numpy
array, with as many rows as the number of dimensions (see shape) and as many
columns as nnz. It always contains unsigned integers in little endian format,
regardless of the declared dtype. The word length is:

	If max(shape) < 256, 1 byte

	If 256 <= max(shape) < 2**16, 2 bytes

	If 2**16 <= max(shape) < 2**32, 4 bytes

	Otherwise, 8 bytes

Each column of sparse_coords indicates the coordinates of the matching value in
sparse_data.

See next section for examples.

When the total of the sparse_data and sparse_coords bytes exceeds chunkSize,
then the information is split across multiple documents, as follows:

	Documents containing slices of sparse_data; in all but the last one,
sparse_coords is a bytes object of size 0

	Documents containing slices of sparse_coords; in all but the first one,
sparse_data is a bytes object of size 0

Note

When nnz=0, both data and coords are bytes objects of size 0.

Examples

xarray object:

xarray.Dataset(
 {"x": [[0, 1.1, 0],
 [0, 0, 2.2]]
 }
)

chunks document (dense):

{
 '_id': bson.ObjectId(...),
 'meta_id': bson.ObjectId(...),
 'name': 'x',
 'chunk': [0, 0],
 'dtype': '<f8',
 'shape': [2, 3],
 'n': 0,
 'type': 'ndarray',
 'data': # 48 bytes buffer that contains [0, 1.1, 0, 0, 0, 2.2]
}

chunks document (sparse):

{
 '_id': bson.ObjectId(...),
 'meta_id': bson.ObjectId(...),
 'name': 'x',
 'chunk': [0, 0],
 'dtype': '<f8',
 'shape': [2, 3]},
 'n': 0,
 'type': 'COO',
 'nnz': 2,
 'fill_value': b'\x00\x00\x00\x00\x00\x00\x00\x00',
 'sparse_data': # 16 bytes buffer that contains [1.1, 2.2]
 'sparse_coords': # 4 bytes buffer that contains [[0, 1,
 # [1, 2]]
}

Indexing

Documents in <prefix>.chunks are identifiable by a unique functional key
(meta_id, name, chunk, n). The driver automatically creates a non-unique index
(meta_id, name, chunk) on the collection. Indexing n is unnecessary as
all the segments for a chunk are always read back together.

Missing data

<prefix>.chunks may miss some or all of the documents needed to
reconstruct the xarray object. This typically happens when:

	the user invokes put(), but then does not compute the returned future

	some or all of the dask chunks fail to compute because of a fault at any
point upstream in the dask graph

	there is a fault in MongoDB, e.g. the database becomes unreachable
between the moment put() is invoked and the moment the future is
computed, or if the disk becomes full.

The document in <prefix>.meta allows defining the
(meta_id, name, chunk) search key for all objects in <prefix>.chunks
and identify any missing documents. When a chunk is split across multiple
documents, one can figure out if the retrieved documents (n=0, n=1, …) are
the complete set:

	for dense arrays (type=ndarray), the number of bytes in data must be the same as
the productory of shape multiplied by dtype.size.

	for sparse arrays(type=COO), the number of bytes in data plus coords must be
the same as nnz * (dtype.size + len(shape) * coords.dtype.size) where
coords.dtype.size is either 1, 2, 4 or 8 depending on max(shape) (see above).

Developer notes: Pint and Sparse

Note

This page is for people contributing patches to the xarray_mongodb library itself.

If you just want to use Pint [https://pint.readthedocs.io/] or
Sparse [https://sparse.pydata.org/], just make sure you satisfy the dependencies
(see Installation) and feed the data through! Also read the documentation of the
ureg parameter when initialising XarrayMongoDB.

For how pint and sparse objects are stored on the database, see Database Reference.

What is NEP18, and how it impacts xarray_mongodb

Several “numpy-like” libraries support a duck-type interface, specified in
NEP18 [https://numpy.org/neps/nep-0018-array-function-protocol.html], so that
both numpy and other NEP18-compatible libraries can transparently wrap around them.

xarray_mongodb does not, itself, use NEP18. However, it does explicitly support several
data types that are possible thanks to NEP18. Namely,

	A xarray.Variable [https://xarray.pydata.org/en/stable/generated/xarray.Variable.html#xarray.Variable] can directly wrap:

	a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], or

	a pint.Quantity [https://pint.readthedocs.io/en/latest/developers_reference.html#pint.Quantity], or

	a sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO], or

	a dask.array.Array [https://docs.dask.org/en/latest/array-api.html#dask.array.Array].

The wrapped object is accessible through the .data property.

Note

xarray.IndexVariable [https://xarray.pydata.org/en/stable/generated/xarray.IndexVariable.html#xarray.IndexVariable] wraps a pandas.Index [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Index.html#pandas.Index], but the .data
property converts it on the fly to a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

	A pint.Quantity [https://pint.readthedocs.io/en/latest/developers_reference.html#pint.Quantity] can directly wrap:

	a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], or

	a sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO], or

	a dask.array.Array [https://docs.dask.org/en/latest/array-api.html#dask.array.Array].

Note

Vanilla pint can also wrap int, float, decimal.Decimal [https://docs.python.org/3/library/decimal.html#decimal.Decimal], but they are
automatically transformed to numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] as soon as xarray wraps around
the Quantity.

The wrapped object is accessible through the .magnitude property.

	A dask.array.Array [https://docs.dask.org/en/latest/array-api.html#dask.array.Array] can directly wrap:

	a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray], or

	a sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO].

The wrapped object cannot be accessed until the dask graph is computed; however the
object meta-data is visible without computing through the ._meta property.

Note

dask wrapping pint, while theoretically possible due to how NEP18 works, is not
supported.

	A sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO] is always backed by two numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] objects,
.data and .coords.

Worst case

The most complicated use case that xarray_mongodb has to deal with is

	a xarray.Variable [https://xarray.pydata.org/en/stable/generated/xarray.Variable.html#xarray.Variable], which wraps around

	a pint.Quantity [https://pint.readthedocs.io/en/latest/developers_reference.html#pint.Quantity], which wraps around

	a dask.array.Array [https://docs.dask.org/en/latest/array-api.html#dask.array.Array], which wraps around

	a sparse.COO [https://sparse.pydata.org/en/latest/generated/sparse.COO.html#sparse.COO], which is built on top of

	two numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

The order is always the one described above. Simpler use cases may remove any of the
intermediate layers; at the top there’s always has a xarray.Variable [https://xarray.pydata.org/en/stable/generated/xarray.Variable.html#xarray.Variable] and at the
bottom the data is always stored by numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray].

Note

At the moment of writing, the example below doesn’t work; see
pint#878 [https://github.com/hgrecco/pint/issues/878].

>>> import dask.array as da
>>> import numpy as np
>>> import pint
>>> import sparse
>>> import xarray
>>> ureg = pint.UnitRegistry()
>>> a = xarray.DataArray(
... ureg.Quantity(
... da.from_array(
... sparse.COO.from_numpy(
... np.array([0, 0, 1.1])
...)
...), "kg"
...)
...)
>>> a
<xarray.DataArray (dim_0: 3)>
dask.array<array, shape=(3,), dtype=float64, chunksize=(3,), chunktype=pint.Quantity>
Dimensions without coordinates: dim_0
>>> a.data
<Quantity(<dask.array<array, shape=(3,), dtype=float64, chunksize=(3,),
 chunktype=COO>>, 'kilogram')>
>>> a.data.magnitude
<dask.array<array, shape=(3,), dtype=float64, chunksize=(3,), chunktype=COO>
>>> a.data.units
<Unit('kilogram')>
>>> a.data.magnitude._meta
<COO: shape=(0,), dtype=float64, nnz=0, fill_value=0.0>
>>> a.data.magnitude.compute()
<COO: shape=(3,), dtype=float64, nnz=1, fill_value=0.0>
>>> a.data.magnitude.compute().data
array([1.1])
>>> a.data.magnitude.compute().coords
array([[2]])

Legacy support

xarray_mongodb has to cope with a few caveats with legacy versions of its dependencies:

	It requires numpy >= 1.15; however NEP18 was first introduced in v1.16 and
consolidated in v1.17.

	It requires dask >= 1.2; however the da.Array._meta property, which exposes
wrapped non-numpy objects, was not added until v2.0.

Hence, there is a set of minimum required versions when pint and sparse are not
involved, and a different set of much more recent ones when they are.

See also: Minimum dependency versions.

Index

 D
 | G
 | P
 | X

D

 	
 	DocumentNotFoundError

G

 	
 	get() (xarray_mongodb.XarrayMongoDB method)

 	(xarray_mongodb.XarrayMongoDBAsyncIO method)

P

 	
 	put() (xarray_mongodb.XarrayMongoDB method)

 	(xarray_mongodb.XarrayMongoDBAsyncIO method)

X

 	
 	XarrayMongoDB (class in xarray_mongodb)

 	
 	XarrayMongoDBAsyncIO (class in xarray_mongodb)

 nav.xhtml

 Table of Contents

 		
 xarray_mongodb

 		
 Installation

 		
 Required dependencies

 		
 Optional dependencies

 		
 Minimum dependency versions

 		
 Sphinx documentation

 		
 Testing

 		
 What’s New

 		
 v0.2.1 (2021-01-13)

 		
 v0.2.0 (2020-07-03)

 		
 Database structure changes

 		
 Packaging changes

 		
 Other changes

 		
 v0.1.0 (2019-03-13)

 		
 API Reference

 		
 Database Reference

 		
 xarray.meta

 		
 xarray.chunks

 		
 Sparse arrays

 		
 Examples

 		
 Indexing

 		
 Missing data

 		
 Developer notes: Pint and Sparse

 		
 What is NEP18, and how it impacts xarray_mongodb

 		
 Worst case

 		
 Legacy support

_static/minus.png

_static/plus.png

_static/file.png

_images/amphora.png
2 Amphora

_static/amphora.png
2 Amphora

